Composition and Refinement of Discrete Real-Time Systems
نویسنده
چکیده
Reactive systems exhibit ongoing, possibly non-terminating, interaction with the environment. Real-time systems are reactive systems that must satisfy quantitative timing constraints. This paper presents a structured compositional design method for discrete real-time systems that can be used to combat the combinatorial explosion of states in the verification of large systems. A composition rule describes how the correctness of the system can be determined from the correctness of its modules, without knowledge of their internal structure. The advantage of compositional verification is clear. Each module is both simpler and smaller than the system itself. Composition requires the use of both model-checking and deductive techniques. A refinement rule guarantees that specifications of high-level modules are preserved by their implementations. The StateTime toolset is used to automate parts of compositional designs using a combination of model-checking and simulation. The design method is illustrated using a reactor shutdown system that cannot be verified using the StateTime toolset (due to the combinatorial explosion of states) without compositional reasoning. The reactor example also illustrates the use of the refinement rule.
منابع مشابه
Recent Developments in Discrete Event Systems
This article is a brief exposure of the process approach to a newly emerging area called "discrete event systems" in control theory and summarizes some of the recent developments in this area. Discrete event systems is an area of research that is developing within the interstices of computer, control and communication sciences. The basic direction of research addresses issues in the analysis an...
متن کاملConstrained Controller Design for Real-time Delay Recovery in Metro Systems
This study is concerned with the real-time delay recovery problem in metro loop lines. Metro is the backbone of public transportation system in large cities. A discrete event model for traffic system of metro loop lines is derived and presented. Two effective automatic controllers, linear quadratic regulator (LQR) and model predictive controller (MPC), are used to recover train delays. A newly-...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملIntroducing Parallel Composition to the Timed Refinement Calculus
The timed refinement calculus is a predicate-transformerbased formalism for the specification and refinement of real-time, reactive systems. Although it has been successfully applied to a number of case studies, its scalability and ability to effectively model concurrent and distributed real-time systems is inhibited by its lack of a suitable parallel composition operator. In particular, previo...
متن کاملInterval-based data refinement: A uniform approach to true concurrency in discrete and real-time systems
a r t i c l e i n f o a b s t r a c t The majority of modern systems exhibit sophisticated concurrent behaviour, where several system components observe and modify the state with fine-grained atomicity. Many systems also exhibit truly concurrent behaviour, where multiple events may occur simultaneously. Data refinement, a correctness criterion to compare an abstract and a concrete implementatio...
متن کامل